
IBM Linux Technology Center

 © 2015 IBM Corporation

Supporting the new IBM z13 mainframe
and its SIMD vector unit

Dr. Ulrich Weigand
Senior Technical Staff Member
GNU/Linux Compilers & Toolchain

Date: Apr 13, 2015

IBM Linux Technology Center

2 © 2015 IBM Corporation

Agenda

• IBM z13

• Vector ABI considerations

• Vector language extension

• Implementation status

IBM Linux Technology Center

3 © 2015 IBM Corporation

IBM z13

IBM Linux Technology Center

4 © 2015 IBM Corporation

z Systems processor roadmap

Core 0

L3_0

L3_1

L2

CoPMCU

L2

Core 1

L3_0

L3_1

Core 2

L2

CoP GX

L2

Core 3

L3_0 Controller

L3_1 Controller

MC
IOs

MC
IOs

GX
IOs

GX
IOs

L3B

L3B

Core 0

L3_0

L3_1

L2

CoPMCU

L2

Core 1

L3_0

L3_1

Core 2

L2

CoP GX

L2

Core 3

L3_0 Controller

L3_1 Controller

MC
IOs

MC
IOs

GX
IOs

GX
IOs

L3B

L3B

z196
9/2010

zEC12
8/2012

z10
2/2008

z13
1/2015

Leadership Single Thread,
Enhanced Throughput

Improved out-of-order

Transactional Memory

Dynamic Optimization

2 GB page support

Step Function in System
Capacity

Top Tier Single Thread
Performance,System

Capacity

Accelerator Integration

Out of Order Execution

Water Cooling

PCIe I/O Fabric

RAIM

Enhanced Energy
Management

Leadership System Capacity
and Performance

Modularity & Scalability

Dynamic SMT

Supports two instruction threads

SIMD

PCIe attached accelerators (XML)

Business Analytics Optimized

Workload Consolidation
and Integration Engine for
CPU Intensive Workloads

Decimal FP

Infiniband

64-CP Image

Large Pages

Shared Memory

IBM Linux Technology Center

5 © 2015 IBM Corporation

z13 continues the CMOS mainframe heritage

IBM Linux Technology Center

6 © 2015 IBM Corporation

z13 8-core processor chip

IBM Linux Technology Center

7 © 2015 IBM Corporation

z13 SIMD – Business analytics vector processing

• Single Instruction Multiple Data instruction set
– Support

• Vector load/store, pack/unpack, merge, permute, select
• Vector gather/scatter element
• Vector load/store with length; load to block boundary

– Integer
• 8b...128b add/subtract (with/without carry/borrow)
• 8b...64b min, max, average, complement/neg/pos
• 8b...64b vector compare; single element compare
• 8b...32b multiply, multiply/add [low/high/even/odd]
• Full-vector bitops & shifts, 8b..64b element shifts/rotates
• Sum-across, population count, checksum
• Galois field multiply sum / and accumulate

IBM Linux Technology Center

8 © 2015 IBM Corporation

z13 SIMD – Business analytics vector processing

• Single Instruction Multiple Data instruction set
– Floating-point

• DP add, sub, mul, div, sqrt, multiply-and-add/sub
• Conversions (integer vs. DP, SP vs. DP)
• Compare & test data class
• Scalar forms of all instructions (single-element DP)
• Full IEEE support (rounding modes, exceptions)

– String
• Supported character types: 8b, 16b, 32b
• Vector Find Any Element [Not] Equal [Or Zero]
• Vector Find Element [Not] Equal [Or Zero]
• Vector Isolate String
• Vector String Range Compare

IBM Linux Technology Center

9 © 2015 IBM Corporation

z13 SIMD – Business analytics vector processing

• Example: Vector gather / scatter element
– VGEF V1,D2(V2,B2),M3

– VSCEF V1,D2(V2,B2),M3

x0 x1 x2 x3

t0 t1 t2 t3

GPR
B2

memory

12-bit
Displacement

IBM Linux Technology Center

10 © 2015 IBM Corporation

FPRs

Vector register file

15

63

0

31
0 127

Bits

R
egiste r

Overlaid vector / floating point register file

• Overlaid register file
– Bits 0:63 of SIMD registers

0-15 will correspond to
FPRs 0-15

–When writing to an FPR,
bits 64:127 of the
corresponding vector
register will become
unpredictable

• SIMD width 128 bits
– 1x128b, 2x64b, 4x32b,

8x16b, 16x8b integer

– 2x64b, 1x64b floating-point

IBM Linux Technology Center

11 © 2015 IBM Corporation

Vector ABI considerations

IBM Linux Technology Center

12 © 2015 IBM Corporation

Vector registers

• Kernel support
– Save/restore VRs on context switch

• “Lazy allocation”: first vector instruction traps to kernel
• Note: visible to user space via data-exception code

– Save/restore VRs across signal handler invocation
• Compatible handler stack layout, extended at end

– Debugger access (ptrace/core file) to VR register set
• NT_S390_VXRS_LOW: low 8 bytes of VRs 0-15
• NT_S390_VXRS_HIGH: full VRs 16-31

– Kernel indicates support via “vx” feature bit
• Reported via /proc/cpuinfo “features” string
• Also indicates hardware support
• Note: Only checking machine type not sufficient!

IBM Linux Technology Center

13 © 2015 IBM Corporation

Vector registers (cont.)

• Function calling convention
– All VRs are defined as call-clobbered

– No extension of user-space context data structures
• jmp_buf (setjmp/longjmp), struct ucontext_t (*context)

– Not optimal, but only option that does not break ABI

• Why no call-saved VRs?
–Would require extending jmp_buf, struct ucontext_t

– ABI change can be mostly hidden via version flags and
symbol-versioning of glibc routines (setjmp etc.)

– Still breaks user code that embeds jmp_buf into struct
• Broke critical applications (e.g. Perl modules, libpng)

IBM Linux Technology Center

14 © 2015 IBM Corporation

Vector data types

• Already exist with current compilers!
–GCC extension: attribute((vector_size(...))

– Passed via reference, operations fully scalarized

– Note: ABI of using those types does change!

• New function calling convention
– Pass in up to 8 VRs (VR 24–31)

– Excess arguments passed on stack (not by reference)
• One or two DW slots, short vectors aligned to the left

– Unnamed arguments to variable argument routines
always passed on the stack
• Leaves va_list data type compatible between ABIs

– No vector arguments to unprototyped routines!

IBM Linux Technology Center

15 © 2015 IBM Corporation

Vector data types (cont.)

• Alignment of vector data types
– Current ABI: always naturally aligned

• Default GCC rule was automatically applied ...

– Vector ABI: maximum alignment of 8 bytes
• Vector load/store already efficient with 8 byte alignment
• ABI only guarantees 8 byte stack pointer alignment

– Note: Alignment change applies both at the C source
level and at the LLVM IR level (DataLayout string)

• ABI selection
– Vector ABI tied to vector facility (-mvx/-mno-vx)

– Vector facility/ABI default when using -march=z13

–Object files marked via .gnu_attribute tags

IBM Linux Technology Center

16 © 2015 IBM Corporation

Vector language extension

IBM Linux Technology Center

17 © 2015 IBM Corporation

Compatibility goals

• IBM XL C/C++ for z/OS
– Defines vector extensions for z13

– Similar to Linux variant, not 100% identical

• AltiVec/VSX vector language extensions
– Vector data types (“vector” keyword)

– Vector builtins defined in <altivec.h> header file

– C operators defined on vector types (later addition)

• GCC vector extension
– Data types defined via attribute((vector_size(...)))

– C operators defined on vector types

IBM Linux Technology Center

18 © 2015 IBM Corporation

System z vector extension: types

• Closely modeled after AltiVec/VSX
– Context-sensitive “vector” keyword

– Integer: vector [un]signed (char|short|int|long long)
• Note: “vector long” is not allowed!

– Boolean: vector bool (char|short|int|long long)

– Floating-point: vector double
• Note: “vector float” not supported at this time

– No equivalent to AltiVec “vector pixel”

• “Syntactic sugar” only
– Data types defined via “vector” keyword behave

identical to equivalent “attribute((vector_size))” types
• Exception: vector bool

IBM Linux Technology Center

19 © 2015 IBM Corporation

System z vector extension: operators

• Vector integer / floating-point types
–Operators follow GCC vector extension

• Vector types are identical to underlying GCC types!

– Challenge: relational/comparison operators
• GCC extension: returns vector signed integer type

–Marked as “opaque” to allow implicit conversion

• Cell/B.E. AltiVec extension: returns scalar bool (“all”)
• XL z/OS extension: returns vector bool type

• Vector bool types
– Do not exist in GCC vector extension

• Mapped to “opaque” vector unsigned integer types

– Implicit conversion to signed/unsigned types

IBM Linux Technology Center

20 © 2015 IBM Corporation

System z vector extension: builtins

• Header file <vecintrin.h>
– Builtins modeled after <altivec.h> builtins

• Builtins overloaded by data type, even in C

– Adapted to cover all System z vector instructions

– No builtins for operations implemented by operators
• Work around via e.g. #define vec_add(x, y) ((x) + (y))

• Low-level builtins – not formally documented
– Used to implement <vecintrin.h>

– LLVM implementation (mostly) compatible with GCC
• Named __builtin_s390_vll, __builtin_s390_vstl, ...
• Intended to be a 1:1 match to vector instructions
• Map to LLVM IR target intrinsics (mostly)

IBM Linux Technology Center

21 © 2015 IBM Corporation

Implementation status

IBM Linux Technology Center

22 © 2015 IBM Corporation

Linux kernel and GNU toolchain

• Kernel support
– Upstream since 3.19 (some fixes will be in 4.0)

• Binutils support
– Vector instructions upstream (will be in 2.26)

– Vector ABI tags still missing

• GCC support
– Internal patch set available, not yet public

• glibc support
–Optimized memory/string routines, not yet public

• GDB support
– Register support upstream, ABI support t.b.d.

IBM Linux Technology Center

23 © 2015 IBM Corporation

LLVM changes – to be posted

• Core infrastructure
– Support z13 processor and vector facility

– Vector register set as superset of FP register set

– Native processor & feature detection

• MC support
– All vector core, integer, floating-point, string instructions

– Vector ABI tags still missing

– Assembler support (e.g. vector gather address format)

IBM Linux Technology Center

24 © 2015 IBM Corporation

LLVM changes – to be posted (cont.)

• Code generation support
– Implement vector ABI if vector facility is present

• DataLayout changes for 8-byte vector type alignment
• Calling convention to use vector registers

–Detect “unnamed arguments” – no generic feature?

– Core instructions
• Support general load/store/move/replicate
• Exploit permute/select/merge/pack/unpack
• Attempt to exploit vector gather/scatter element

– Integer instructions
• Usual arithmetic & bitwise operations
• Comparisons (exploit condition code if feasible)

IBM Linux Technology Center

25 © 2015 IBM Corporation

LLVM changes – to be posted (cont.)

• Code generation support (cont.)
– Floating-point instructions

• Full arithmetic on <2 x double>
• Partial support for <4 x float>

– Expand/scalarize non-supported operations

• Exploit instructions for scalar “double” in 32 VRs

– Short vector types
• Accept <16-byte vector types, extend to full size
• Optimize pack/unpack – useful for llvmpipe

– New LLVM IR target intrinsics
• Directly model all z13 instructions (that are not already

directly modeled via standard LLVM IR)
• Optimize CC result comparison

IBM Linux Technology Center

26 © 2015 IBM Corporation

Clang changes – to be posted

• Core infrastructure
– Support z13 processor and vector facility

• Support -march=z13 option
• New -mvx / -mno-vx command line options

– Implement vector ABI
• Vector type alignment

–C/C++ language via MaxVectorAlign setting
– LLVM DataLayout change

• Calling convention
– All vector types passed “direct” at the LLVM IR level
–Handle “vector-like” single-element aggregates
– Expand va_arg for vector types

IBM Linux Technology Center

27 © 2015 IBM Corporation

Clang changes – to be posted (cont.)

• Language extension
– Enabled via new option -mzvector / -mno-zvector

• New internal flag getLangOpts().ZVector
• Largely shares implementation with -maltivec code

– Changes vs. AltiVec – data types
• No “vector pixel”, “vector float”, “vector long”
• Always support “vector long long”, “vector double”

– Changes vs. AltiVec – operators
• Some differences w.r.t. which implicit conversions are

allowed (signed vs. unsigned vs. bool)
–Mostly no-op in -flax-vector-conversions mode
–Maybe incorrect for AltiVec too – to be verified …

• Comparison operators handled like for GCC types

IBM Linux Technology Center

28 © 2015 IBM Corporation

Clang changes – to be posted (cont.)

• Low-level builtins
–Mostly straightforward via LLVM IR (GCCBuiltin)

• Except for those that have additional CC return value

– Some require compile-time literal argument verification

• New header file <vecintrin.h>
– Implements documented System z vector builtins

– Builtins implemented as always-inline function, or
macros (where required due to constant arguments)
• Plain C code, using vector operators or low-level builtins

–Overloaded via clang attribute((overloaded))

– Argument verification using attribute((enable_if))

IBM Linux Technology Center

29 © 2015 IBM Corporation

Summary

IBM Linux Technology Center

30 © 2015 IBM Corporation

Summary

• New z13 mainframe first to support SIMD
– Intended to optimize business analytics workloads

• System-wide changes required to exploit SIMD
– New ABI for vector registers and vector types

– Source-language vector extensions

• Implementation status
– Kernel support available

– Core GNU toolchain support in progress
• Waiting for GCC mainline to re-open after GCC 5.1

– Clang/LLVM implementation in progress
• To be submitted in parallel with GCC changes

IBM Linux Technology Center

31 © 2015 IBM Corporation

Questions

?

	IBM Linux Technology Center - Core Linux and Open Source Expertise
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

