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Agenda

• IBM z13

• Vector ABI considerations
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• Implementation status
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IBM z13
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z13 continues the CMOS mainframe heritage
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z13 8-core processor chip
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z13 SIMD – Business analytics vector processing

• Single Instruction Multiple Data instruction set
– Support

• Vector load/store, pack/unpack, merge, permute, select
• Vector gather/scatter element
• Vector load/store with length; load to block boundary

– Integer
• 8b...128b add/subtract (with/without carry/borrow)
• 8b...64b min, max, average, complement/neg/pos
• 8b...64b vector compare; single element compare
• 8b...32b multiply, multiply/add [low/high/even/odd]
• Full-vector bitops & shifts, 8b..64b element shifts/rotates
• Sum-across, population count, checksum
• Galois field multiply sum / and accumulate
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z13 SIMD – Business analytics vector processing

• Single Instruction Multiple Data instruction set
– Floating-point

• DP add, sub, mul, div, sqrt, multiply-and-add/sub
• Conversions (integer vs. DP, SP vs. DP)
• Compare & test data class
• Scalar forms of all instructions (single-element DP) 
• Full IEEE support (rounding modes, exceptions)

– String
• Supported character types: 8b, 16b, 32b
• Vector Find Any Element [Not] Equal [Or Zero]
• Vector Find Element [Not] Equal [Or Zero]
• Vector Isolate String
• Vector String Range Compare
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z13 SIMD – Business analytics vector processing

• Example: Vector gather / scatter element
– VGEF V1,D2(V2,B2),M3

– VSCEF V1,D2(V2,B2),M3

x0 x1 x2 x3

t0 t1 t2 t3

GPR
B2

memory

12-bit
Displacement
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FPRs

Vector register file
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• Overlaid register file
– Bits 0:63 of SIMD registers 

0-15 will correspond to 
FPRs 0-15

–When writing to an FPR, 
bits 64:127 of the 
corresponding vector 
register will become 
unpredictable

• SIMD width 128 bits
– 1x128b, 2x64b, 4x32b, 

8x16b, 16x8b integer

– 2x64b, 1x64b floating-point
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Vector ABI considerations
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Vector registers

• Kernel support
– Save/restore VRs on context switch

• “Lazy allocation”: first vector instruction traps to kernel
• Note: visible to user space via data-exception code

– Save/restore VRs across signal handler invocation
• Compatible handler stack layout, extended at end

– Debugger access (ptrace/core file) to VR register set
• NT_S390_VXRS_LOW: low 8 bytes of VRs 0-15
• NT_S390_VXRS_HIGH: full VRs 16-31

– Kernel indicates support via “vx” feature bit
• Reported via /proc/cpuinfo “features” string
• Also indicates hardware support
• Note: Only checking machine type not sufficient!
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Vector registers (cont.)

• Function calling convention
– All VRs are defined as call-clobbered

– No extension of user-space context data structures
• jmp_buf (setjmp/longjmp), struct ucontext_t (*context)

– Not optimal, but only option that does not break ABI

• Why no call-saved VRs?
–Would require extending jmp_buf, struct ucontext_t

– ABI change can be mostly hidden via version flags and 
symbol-versioning of glibc routines (setjmp etc.)

– Still breaks user code that embeds jmp_buf into struct
• Broke critical applications (e.g. Perl modules, libpng)
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Vector data types

• Already exist with current compilers!
–GCC extension: attribute((vector_size(...))

– Passed via reference, operations fully scalarized

– Note: ABI of using those types does change!

• New function calling convention
– Pass in up to 8 VRs (VR 24–31)

– Excess arguments passed on stack (not by reference)
• One or two DW slots, short vectors aligned to the left

– Unnamed arguments to variable argument routines 
always passed on the stack
• Leaves va_list data type compatible between ABIs

– No vector arguments to unprototyped routines!
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Vector data types (cont.)

• Alignment of vector data types
– Current ABI: always naturally aligned

• Default GCC rule was automatically applied ...

– Vector ABI: maximum alignment of 8 bytes
• Vector load/store already efficient with 8 byte alignment
• ABI only guarantees 8 byte stack pointer alignment

– Note: Alignment change applies both at the C source 
level and at the LLVM IR level (DataLayout string)

• ABI selection
– Vector ABI tied to vector facility (-mvx/-mno-vx)

– Vector facility/ABI default when using -march=z13

–Object files marked via .gnu_attribute tags
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Vector language extension
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Compatibility goals

• IBM XL C/C++ for z/OS
– Defines vector extensions for z13

– Similar to Linux variant, not 100% identical

• AltiVec/VSX vector language extensions
– Vector data types (“vector” keyword)

– Vector builtins defined in <altivec.h> header file

– C operators defined on vector types (later addition)

• GCC vector extension
– Data types defined via attribute((vector_size(...)))

– C operators defined on vector types
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System z vector extension: types

• Closely modeled after AltiVec/VSX
– Context-sensitive “vector” keyword

– Integer: vector [un]signed (char|short|int|long long)
• Note: “vector long” is not allowed!

– Boolean: vector bool (char|short|int|long long)

– Floating-point: vector double
• Note: “vector float” not supported at this time

– No equivalent to AltiVec “vector pixel”

• “Syntactic sugar” only
– Data types defined via “vector” keyword behave 

identical to equivalent “attribute((vector_size))” types
• Exception: vector bool
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System z vector extension: operators

• Vector integer / floating-point types
–Operators follow GCC vector extension

• Vector types are identical to underlying GCC types!

– Challenge: relational/comparison operators
• GCC extension: returns vector signed integer type

–Marked as “opaque” to allow implicit conversion

• Cell/B.E. AltiVec extension: returns scalar bool (“all”)
• XL z/OS extension: returns vector bool type

• Vector bool types
– Do not exist in GCC vector extension

• Mapped to “opaque” vector unsigned integer types

– Implicit conversion to signed/unsigned types
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System z vector extension: builtins

• Header file <vecintrin.h>
– Builtins modeled after <altivec.h> builtins

• Builtins overloaded by data type, even in C

– Adapted to cover all System z vector instructions

– No builtins for operations implemented by operators
• Work around via e.g. #define vec_add(x, y) ((x) + (y))

• Low-level builtins – not formally documented
– Used to implement <vecintrin.h>

– LLVM implementation (mostly) compatible with GCC
• Named __builtin_s390_vll, __builtin_s390_vstl, ...
• Intended to be a 1:1 match to vector instructions
• Map to LLVM IR target intrinsics (mostly)
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Implementation status
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Linux kernel and GNU toolchain

• Kernel support
– Upstream since 3.19 (some fixes will be in 4.0)

• Binutils support
– Vector instructions upstream (will be in 2.26)

– Vector ABI tags still missing

• GCC support
– Internal patch set available, not yet public

• glibc support
–Optimized memory/string routines, not yet public

• GDB support
– Register support upstream, ABI support t.b.d.
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LLVM changes – to be posted

• Core infrastructure
– Support z13 processor and vector facility

– Vector register set as superset of FP register set

– Native processor & feature detection

• MC support
– All vector core, integer, floating-point, string instructions

– Vector ABI tags still missing

– Assembler support (e.g. vector gather address format)
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LLVM changes – to be posted (cont.)

• Code generation support
– Implement vector ABI if vector facility is present

• DataLayout changes for 8-byte vector type alignment
• Calling convention to use vector registers

–Detect “unnamed arguments” – no generic feature?

– Core instructions
• Support general load/store/move/replicate
• Exploit permute/select/merge/pack/unpack
• Attempt to exploit vector gather/scatter element

– Integer instructions
• Usual arithmetic & bitwise operations
• Comparisons (exploit condition code if feasible)
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LLVM changes – to be posted (cont.)

• Code generation support (cont.)
– Floating-point instructions

• Full arithmetic on <2 x double>
• Partial support for <4 x float>

– Expand/scalarize non-supported operations

• Exploit instructions for scalar “double” in 32 VRs

– Short vector types
• Accept <16-byte vector types, extend to full size
• Optimize pack/unpack – useful for llvmpipe

– New LLVM IR target intrinsics
• Directly model all z13 instructions (that are not already 

directly modeled via standard LLVM IR)
• Optimize CC result comparison 
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Clang changes – to be posted

• Core infrastructure
– Support z13 processor and vector facility

• Support -march=z13 option
• New -mvx / -mno-vx command line options

– Implement vector ABI
• Vector type alignment

–C/C++ language via MaxVectorAlign setting
– LLVM DataLayout change

• Calling convention
– All vector types passed “direct” at the LLVM IR level
–Handle “vector-like” single-element aggregates
– Expand va_arg for vector types
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Clang changes – to be posted (cont.)

• Language extension
– Enabled via new option -mzvector / -mno-zvector

• New internal flag getLangOpts().ZVector
• Largely shares implementation with -maltivec code

– Changes vs. AltiVec – data types
• No “vector pixel”, “vector float”, “vector long”
• Always support “vector long long”, “vector double”

– Changes vs. AltiVec – operators
• Some differences w.r.t. which implicit conversions are 

allowed (signed vs. unsigned vs. bool)
–Mostly no-op in -flax-vector-conversions mode
–Maybe incorrect for AltiVec too – to be verified …

• Comparison operators handled like for GCC types



IBM Linux Technology Center

28 © 2015 IBM Corporation

Clang changes – to be posted (cont.)

• Low-level builtins
–Mostly straightforward via LLVM IR (GCCBuiltin)

• Except for those that have additional CC return value

– Some require compile-time literal argument verification

• New header file <vecintrin.h>
– Implements documented System z vector builtins

– Builtins implemented as always-inline function, or 
macros (where required due to constant arguments)
• Plain C code, using vector operators or low-level builtins

–Overloaded via clang attribute((overloaded))

– Argument verification using attribute((enable_if))
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Summary
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Summary

• New z13 mainframe first to support SIMD
– Intended to optimize business analytics workloads

• System-wide changes required to exploit SIMD
– New ABI for vector registers and vector types

– Source-language vector extensions

• Implementation status
– Kernel support available

– Core GNU toolchain support in progress
• Waiting for GCC mainline to re-open after GCC 5.1

– Clang/LLVM implementation in progress
• To be submitted in parallel with GCC changes
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Questions

?
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